

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH02) Paper 01 Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WCH02_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Answer	Mark
Number		
1	The only correct answer is C	1
	A is not correct because the molecule has two tetrahedral carbons	
	B is not correct because the molecule has a tetrahedral carbon	
	D is not correct because the molecule has a tetrahedral carbon	

Question Number	Correct Answer	Mark
2	The only correct answer is B	1
	A is not correct because it does not contain a 120° bond angle	
	C is not correct because it does not contain a 90° bond angle	
	D is not correct because it contains neither bond angle	

Question	Correct Answer	Mark
Number		
3	The only correct answer is B	1
	A is not correct because the N-H bond is less polar than the O-H bond	
	C is not correct because the C-Cl bond is less polar than the O-H bond	
	D is not correct because the C-I bond is less polar than the O-H bond	

Question Number	Correct Answer	Mark
4	The only correct answer is D	1
	A is not correct because the molecule is non-polar	
	B is not correct because the bond is polar	
	C is not correct because the bond is polar and the molecule is non-polar	

Question Number	Correct Answer	Mark
5	The only correct answer is A	1
	B is not correct because both effects are incorrect	
	C is not correct because the effect of increasing chain length is to increase the boiling temperature	
	D is not correct because the effect of increasing branching is to decrease the boiling temperature	

Question	Correct Answer	Mark
Number		
6	The only correct answer is A	1
	B is not correct because HF has the highest boiling temperature	
	C is not correct because HF has the highest boiling temperature	
	and HCl the lowest	
	D is not correct because the trend for HI, HBr and HCl is incorrect	

Question	Correct Answer	Mark
Number		
7	The only correct answer is D	1
	A is not correct because metal nitrites only form with some Group 1 nitrates	
	B is not correct because metal oxides do not form with some Group 1 nitrates	
	C is not correct because nitrogen dioxide only forms with Group 2 and lithium nitrates	

Question Number	Correct Answer	Mark
8	The only correct answer is D	1
	A is not correct because hydrogen bromide usually forms first	
	B is not correct because bromine forms	
	C is not correct because sulfur dioxide forms	

Question Number	Correct Answer	Mark
9	The only correct answer is C	1
	A is <i>not correct</i> because chlorine disproportionates from 0 to +1 and -1	
	B is <i>not correct</i> because chlorine disproportionates from 0 to +5 and -1	
	D is <i>not correct</i> because chlorine disproportionates from +5 to +7 and -1	

Question Number	Correct Answer	Mark
10	The only correct answer is A	1
	B is not correct because this is the effect of lowering the temperature	
	C is not correct because this is the effect of increasing the temperature	
	D is not correct because the area under the curve does not change	

Question	Correct Answer	Mark
Number		
11(a)	The only correct answer is B	1
	A is not correct because both effects are incorrect	
	C is not correct because the yield increases	
	D is not correct because the rate decreases	

Question	Correct Answer	Mark
Number		
11(b)	The only correct answer is D	1
	A is not correct because the yield increases	
	B is not correct because the rate increases	
	C is not correct because both effects are incorrect	

Question	Correct Answer	Mark
Number		
11(c)	The only correct answer is C	1
	A is not correct because the quantities have been doubled	
	B is not correct because the quantities have been doubled	
	D is not correct because the quantities have been doubled	

Question	Correct Answer	Mark
Number		
12	The only correct answer is D	1
	A is not correct because the volume of H ₂ O gas has been ignored	
	B is not correct because the volume of carbon dioxide has been ignored	
	C is not correct because the volume of excess oxygen has been ignored	

Question Number	Correct Answer	Mark
13	The only correct answer is A	1
	B is not correct because it is a primary alcohol	
	C is not correct because it is a secondary alcohol	
	D is not correct because it is a secondary alcohol	

Question	Correct Answer	Mark
Number		
14	The only correct answer is A	1
	B is not correct because butane is not formed	
	C is not correct because butane is not formed	
	D is not correct because butene is not formed	

Question	Correct Answer	Mark
Number		
15(a)	The only correct answer is C	1
	A is not correct because it is not an addition reaction nor electrophilic	
	B is not correct because it is not an addition reaction nor nucleophilic	
	D is not correct because it is not nucleophilic	

Question	Correct Answer	Mark
Number		
15(b)	The only correct answer is D	1
	A is not correct because it is not an addition reaction	
	B is not correct because it is not an addition reaction	
	C is not correct because it does not involve a free radical	

Question Number	Correct Answer	Mark
16	The only correct answer is A	1
	B is not correct because it is emitted in smaller amounts	
	C is not correct because it is emitted in smaller amounts	
	D is not correct because it is emitted in smaller amounts	

Question Number	Correct Answer	Mark
17	The only correct answer is B A is not correct because neither water vapour nor carbon dioxide depletes the ozone layer	1
	C is not correct because carbon dioxide does not deplete the ozone layer	
	D is not correct because water vapour does not deplete the ozone layer	

(Total for Section A = 20 marks)

Section B

Question	Acceptable Answers	Reject	Mark
Number			
18(a)(i)	OR CCCC	Bonds at right angles only	1
	ALLOW Open/solid circles for C atoms Skeletal structures IGNORE	Atoms of any other element	
	Number of tetrahedral units Fewer than four bonds to peripheral C atoms Stated bond angles	Any C atom with 5 (or more) bonds	

Question Number	Acceptable Answers		Reject	Mark
18(a)(ii)	Mark all points independently			3
	Shape: tetrahedral			
	ALLOW			
	Tetrahedron			
	Any reasonable attempt at spelling	(1)		
	Bond angle: 109.5°			
	ALLOW			
	109°	(1)		
	Explanation: minimum			
	repulsion / maximum separation			
	and			
	(between) four (bonding) pairs of electrons		Four bonds	
	(3 2 3 3 4 5 3 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Four atoms	
	ALLOW			
	As far apart as possible for maximum separa	tion		
	Four bond pairs / regions of electron density			
	covalent bonds	(1)		

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	Diagram showing 2, 3, 4 or 5 interlocking hexagons with 13 to 19 carbons inclusive ALLOW 11 to 21 carbons e.g. ALLOW		2
	Non skeletal diagrams (1) IGNORE Number of bonds to peripheral carbons Additional layers	Any carbon with four (or more) bonds	
	Bond angle 120° (1)		

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	London/dispersion force(s) / van der Waals'	Hydrogen bond	1
	ALLOW Any reasonable attempt at spelling		
	Instantaneous dipole-induced dipole Induced dipole-induced dipole Temporary dipole-induced dipole	(Permanent) dipole- dipole	
	IGNORE Intermolecular forces		

Question Number	Acceptable Answers	Reject	Mark
18(b)(iii)	Graphite has delocalised electron s (and diamond does not)	Just one / a delocalised electron	1
	ALLOW Delocalised / free moving electron per atom or if linked to every carbon having three bonds		
	Sea of delocalised electrons	Lone pair of electrons	
	Graphite has some free moving electron s	Free moving electro n	
	Electrons can move between layers	Electrons move perpendicular to layers	
	Diamond does not contain delocalised electrons	Any reference to graphite molecules	
	IGNORE Just free electrons Reference to charge carriers		

Question Number	Acceptable Answers	Reject	Mark
18(b)(iv)	Heat is not conducted at right angles to the layers		2
	OR		
	Heat is conducted well in the direction of / within the layers		
	ALLOW Heat is conducted well between the layers / spread out evenly across the spacecraft (1)		
	Graphite has a high melting / boiling temperature		
	ALLOW Graphite can withstand high temperatures / is thermally stable / is inert (1)		
	IGNORE		
	Soft / slippery / layers can slide Reference to reduced friction Malleable/mouldable		
	Low density/weight		

Question Number	Acceptable Answers	Reject	Mark
18(c)	(Buckminster)fullerene(s) / (carbon/fullerene) nanotubes / graphene ALLOW Buckyball(s) Any reasonable attempt at spelling IGNORE 'Carbon sixty'/C ₆₀ Amorphous carbon	Charcoal / soot / coal / carbon fibre	1

(Total for Question 18 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	 Hydrogen bonding ALLOW H-bond(ing) London/dispersion / van der Waals' / instantaneous dipole-induced dipole / temporary dipole-induced dipole Permanent dipole(-permanent dipole) IGNORE Just dipole-dipole 		2
	All three (2)		
	Any two (1)		
	Any reference to a covalent bond with one or two correct intermolecular forces scores (0) Any reference to a covalent bond with three correct intermolecular forces scores (1)		

Question Number	Acceptable Answer	Reject	Mark
19(a)(ii)	Butan-2-ol forms hydrogen bonds with water (making some dissolve)		2
	ALLOW Butan-2-ol cannot form H-bonds with water easily / forms H-bonds with water less easily than ethanol (1)	Cannot form H-bonds with water	
	IGNORE Just butan-2-ol can/forms/has H-bonds		
	London/dispersion forces between butan-2-ol molecules are relatively strong / stronger than in ethanol (limiting solubility)		
	ALLOW London/dispersion forces in butan-2-ol are strong(er)		
	ACCEPT van der Waals' / instantaneous dipole-induced dipole / temporary dipole-induced dipole forces for London/dispersion forces (1)		
	Energy released from intermolecular forces formed between butan-2-ol and water less than that required to break intermolecular forces (within butan-2-ol and water) scores (1)		
	IGNORE Comparison of strength of London forces in butan-2-ol to H-bonding in water		
	Reference to the number of H-bonds formed / in water/butan-2-ol/ethanol		
	Reference to polarity of water/butan-2-ol/ ethanol / hydrophobic/hydrophilic properties		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	Sodium disappears ALLOW Dissolves for disappears Solid for sodium White solid (forming) IGNORE White precipitate forms Heat produced	Yellow flame	2
	Sodium sinks/floats Sodium decreases in mass Sodium melts Bubbles / fizzing / effervescence (1) IGNORE Gas/vapour/hydrogen/H ₂ produced	Any other gas eg	

Question Number	Acceptable Answer	Reject	Mark
19(b)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2
	Correct formula of sodium ethoxide		
	ALLOW $C_2H_5O^{(-)}Na^{(+)}$ (1)	O−Na CH₃CH₂NaO C₂H₅NaO	
	Rest of equation (1)	C ₂ H ₆ O	
	M2 dependent on M1 or O–Na/CH ₃ CH ₂ NaO/C ₂ H ₅ NaO		
	ALLOW Multiples Fully correct equation for alcohol other than ethanol eg		
	CH₃OH/C₃H ₇ OH scores (1)		
	IGNORE state symbols even if incorrect		

Question	Acceptable Answer	Reject	Mark
Number			_
19(c)(i)	IGNORE CH ₃ COOH Displayed/skeletal formula Carboxylic acid Just ethanoic Any one from:		2
	 Fizzes / effervesces / bubbles / with sodium carbonate/ hydrogencarbonate / calcium carbonate ALLOW Gas produced turns limewater cloudy for fizzes etc Neutralises (a significant volume of) sodium carbonate/ hydrogencarbonate solution 	PCl₅/phosphorus(V) chloride	
	 Fizzes / effervesces / bubbles with Mg/magnesium Fruity smell (when heated) with an alcohol (in the presence of an acid catalyst) (1) No TE on M1 unless near miss e.g. CH₃COOH/carboxylic acid 	Na/sodium	
	IGNORE		
	Tests involving indicators eg litmus		

Question Number	Acceptable Answer	Reject	Mark
19(c)(ii)	OR H	Molecular formula	1

Question	Acceptable Answer	Reject	Mark
Number			
19(c)(iii)	Any two from:	Penalise	2
	Butan-2-ol has O-H	omission of peak	
	peak/absorption/trough	once only	
	ALLOW		
	_	OLI-/bydrovida	
	OH/-OH/hydroxyl for O-H	OH ⁻ /hydroxide C=O	
	C-O/C-OH peak	C=0	
	Wavenumber/stretch/vibration for		
	peak etc		
	Reverse argument for oxidation		
	product		
	IGNORE		
	Alcohol absorption		
	Oxidation product has C=O	Aldehyde C=O	
	peak/absorption/trough	C-O	
	ALLOW		
	Carbonyl bond peak		
	Butan(-2-)one/ketone/product for		
	oxidation product		
	Reverse argument for butan-2-ol		
	Poth have different fingerprint		
	Both have different fingerprint regions		
	regions		
	(2)		
	IGNORE Different C. II absorbtions		
	Different C-H absorptions	Aldabyds C. I.	
	Different C–C absorptions	Aldehyde C-H	
	Wavenumbers, even if incorrect		

(Total for Question 19 = 13 marks)

Question Number	Acceptable Answer	Reject	Mark
20(a)(i)	2l ⁻ + Cl ₂ → l ₂ + 2Cl ⁻ ALLOW Multiples Spectator ions if crossed out IGNORE Full equation (as working) Half equations (as working) State symbols even if incorrect		1

Question	Acceptable Answer		Reject	Mark
Number				
20(a)(ii)	Any suitable named liquid organic		Any alcohol / alkene /	2
	solvent e.g. hexane / cyclohexane		arene	
	ALLOW			
	Tetra / trichloro(m)ethane		Halogenoalkane	
	Hydrocarbon solvent	(1)		
	Pink / purple / violet / mauve	(1)		
	IGNORE			
	Modifiers eg pale			
	M2 dependent on M1			

Question Number	Acceptable Answer		Reject	Mark
20(a)(iii)	Sulfur / S oxidised from (+)2 to (+)2½	(1)	S ₂ O ₃ ²⁻ oxidised	2
	lodine / I / I₂ reduced from 0 to -1	(1)		
	OR			
	Sulfur / S from (+)2 to (+)2½	(1)	S ₂ O ₃ ²⁻	
	lodine / I / I ₂ from 0 to -1 and			
	Sulfur / S oxidised	(4)	S ₂ O ₃ ²⁻ oxidised	
	lodine / l / l ₂ reduced	(1)		
	ALLOW			
	Oxidation states from annotated equation			

Question Number	Acceptable Answer	Reject	Mark
			4
20(b)(i)	I		1
	~ `		
	I		
	IGNORE		
	Bond angles and bond lengths		
	Displayed / structural formulae even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
20(b)(ii)	There is only one (stable) isotope of iodine ALLOW No isotopes of iodine (Both) chlorine and bromine have two isotopes Chlorine has ³⁵ Cl and ³⁷ Cl and / or bromine has ⁷⁹ Br	Isomer	1
	and ⁸¹ Br ACCEPT Chloro- / chloride for chlorine Bromo- / bromide for bromine		

Question Number	Acceptable Answer	Reject	Mark
20(b)(iii)	CH ₃ CH ₂ CH ₂ ⁺	Omission of charge	2
	ALLOW C ₃ H ₇ ⁺	CH₃CHCH₃ ⁺	
	Displayed formula (1)		
	IGNORE Position of positive charge	Just fragmentation	
	The C-I bond breaks (may be shown on a diagram) (1)	, 0	
	IGNORE Loses iodine		

Question Number	Acceptable Answer		Reject	Mark
20(c)(i)	Yellow		Pale yellow	2
	ALLOW Bright yellow (1	1)		
	Silver iodide (1	1)		
	IGNORE AgI			

Question	Acceptable Answer	Reject	Mark
Number			
20(c)(ii)	$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$		1
	TE on silver chloride / silver bromide in (c)(i)		

Question Number	Acceptable Answer		Reject	Mark
20(d)	CH ₃ CH ₂ CH ₂		Penalise incorrect carbon chain / missing hydrogens once only	2
	Curly arrow from lone pair on OH ⁻ to carbon (of C-I)	(1)	From Na-OH OH:	
	Curly arrow from C-I bond to the iodine just beyond (can be scored from a transition state)	or (1)		
	Correct S _N 1 mechanism scores (2)			
	IGNORE Dipoles even if incorrect Transition state / intermediate in S_N2 mechanism Products, even if incorrect		Full charges	

Question Number	Acceptable Answer	Reject	Mark
20(e)(i)	Elimination		1

Question	Correct Answer	Reject	Mark
Number			
20(e)(ii)	Propene		1
	ALLOW Prop-1-ene		
	IGNORE		
	Alkene		

(Total for Question 20 = 16 marks) (Total for Section B = 40 marks)

Section C

Question Number	Acceptable Answer	Reject	Mark
21(a)(i)	Electrons excited / promoted (to higher energy levels / orbitals by heat) ALLOW	by electricity / combustion / burning	3
	Raised/move / jump for excited (1)	Pushed	
	(Electrons) relax to lower energy levels / orbitals		
	ALLOW Return / drop / fall / de-excite for relax Ground state for lower energy levels (1)		
	To score both M1 and M2 energy levels / orbitals must be mentioned somewhere		
	IGNORE Reference to stability of excited / ground state		
	Energy / photons emitted as (visible) light ALLOW	Reflected	
	Wavelength / frequency / radiation for energy Given out / released for emitted Visible range / region / spectrum for light (1)		
	IGNORE ion or atom throughout		

Question	Acceptable Answer	Reject	Mark
Number			
21(a)(ii)	Yellow-red	Just yellow	1
	ALLOW Brick-red / red	Any mention of orange	

Question Number	Acceptable Answer	Reject	Mark
21(a)(iii)	Energy / frequency / wavelength (emitted) is outside the visible range / region / spectrum ALLOW Photon / radiation / light for energy etc Too high / low / in the ultraviolet for outside Energy etc cannot be detected by the eye	of the ions White light	1

Question Number	Acceptable Answer	Reject	Mark
21(b)	CaCO ₃ + CO ₂ + H ₂ O \rightarrow Ca(HCO ₃) ₂ ALLOW H ₂ CO ₃ for (CO ₂ + H ₂ O) Multiples IGNORE state symbols even if incorrect		1

Question	Acceptable Answer	Reject	Mark
Number			
21(c)	Barium sulfate is (much) less soluble (in water)		1
	or reverse argument		
	ALLOW Barium sulfate is insoluble Solubility of sulfates decreases down group		
	IGNORE		
	Reference to hydration/lattice enthalpy		
	Reference to reactivity		

Question Number	Acceptable Answer	Reject	Mark
21(d)(i)	Calcium ions / Ca ²⁺ are larger than magnesium ions / Mg ²⁺		3
	ALLOW Calcium ions / Ca ²⁺ have a lower charge density than magnesium ions / Mg ²⁺ (1)		
	The calcium ions / Ca ²⁺ polarise the C–O bond / carbonate ion less		
	ALLOW The calcium ions / Ca ²⁺ distort (the electron cloud in) the carbonate ion less (1)		
	The C–O bond is less easily broken		
	ALLOW More energy needed to break the bonds in the carbonate ion Bonds in the carbonate ion are less easily broken		
	ALLOW (1)		
	Reverse arguments for magnesium ions / Mg ²⁺ throughout		

Question Number	Acceptable Answer		Reject	Mark
21(d)(ii)	moles of $CO_2 = \underline{1.626}$ (= 0.06775) 24 Then Route 1 M_r metal carbonate = $\underline{10.0}$ 0.06775 = 147.6 TE on moles CO_2 A_r metal (= 147.6 - 60) = 87.6 So the metal (ion) is $Sr^{(2+)}$ /strontium TE on M_r metal carbonate provided nearest A that of a group 2 element $M_r = \underline{10.00 \times 24} = 147.6$ scores M1 and M2 1.626 $A_r = \underline{10.00 \times 24} - 60 = 87.6$ and Sr scores (3) 1.626	(1) (1) (1)	Ra / radium	3
	Route 2 Mass metal = 10.00 - 0.06775 × 60 = 5.935 (g) TE on moles CO ₂ A _r metal = 5.935 = 87.6 0.06775 So the metal (ion) is Sr ⁽²⁺⁾ /strontium TE on M _r metal carbonate provided nearest A that of a group 2 element Correct metal with no working scores (1) IGNORE SF except 1SF Units	(1) (1) _r is	Ra / radium	

Question	Acceptable Answer	Reject	Mark
Number			
21(d)(iii)	$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$	H ₂ O(aq)	1
	ALLOW		
	CO ₂ (aq)		

Question Number	Acceptable Answer		Reject	Mark
21(e)(i)	Methyl orange	(1)	Litmus and universal indicator	2
	From yellow to orange	(1)	to red / pink	
	M2 dependent on M1			
	ALLOW Any acid-alkali titration indicators with correct colour change			
	e.g. Phenolphthalein	(1)	From red	
	From pink to colourless	(1)	From purple	
	ALLOW Any recognisable spelling of indicator			

Question Number	Acceptable Answer		Reject	Mark
21(e)(ii)	Mols of HCl = 8.90×0.05 1000 = $4.45 \times 10^{-4} / 0.000445$ Mols of Ca(OH) ₂ = $4.45 \times 10^{-4} \times \frac{1}{2}$ = $2.225 \times 10^{-4} / 0.0002225$ [Ca(OH) ₂] = $2.225 \times 10^{-4} \times 100$ = $2.225 \times 10^{-2} / 0.02225$ Concentration of calcium hydroxide = $2.225 \times 10^{-2} \times 74.1$	(1) (1) (1)		4
	= 1.648725 (g dm ⁻³) ALLOW TE at each stage IGNORE units, even if incorrect IGNORE SF except 1SF Correct answer with no working scores (4)	(1)		

(Total for Section C = 20 marks)

(TOTAL FOR PAPER = 80 MARKS)